Boundary Effects on Multiplication Noise in Thin Heterostructure Avalanche Photodiodes: Theory and Experiment

نویسندگان

  • Majeed M. Hayat
  • Oh-Hyun Kwon
  • Shuling Wang
  • Joe C. Campbell
  • Bahaa E. A. Saleh
  • Malvin C. Teich
چکیده

The history-dependent recurrence theory for multiplication noise in avalanche photodiodes (APDs), developed by Hayat et al., is generalized to include inter-layer boundary effects in heterostructure APDs with multilayer multiplication regions. These boundary effects include the initial energy of injected carriers as well as bandgap-transition effects within a multilayer multiplication region. It is shown that the excess noise factor can be significantly reduced if the avalanche process is initiated with an energetic carrier, in which case the initial energy serves to reduce the initial dead space associated with the injected carrier. An excess noise factor reduction up to 40% below the traditional thin-APD limit is predicted for GaAs, depending on the operational gain and the multiplication-region’s width. The generalized model also thoroughly characterizes the behavior of dead space as a function of position across layers. This simultaneously captures the effect of the nonuniform electric field as well as the anticipatory nature of inter-layer bandgap-boundary effects. Such anticipatory behavior of the dead space is ignored in simplified models where the dead space is assumed to change abruptly at the layer boundary. The theory is applied to recently fabricated thin Al0 6Ga0 4As/GaAs heterostructure APDs exhibiting low excess noise factors. The excess noise factor predictions are in very good agreement with experiment. In one device, where the initial-energy effect is pronounced, the measured excess noise factor is 36% below the value predicted by previous analytical multiplication models which ignore the initial-energy effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breakdown Probabilities for Thin Heterostructure Avalanche Photodiodes

The recurrence theory for the breakdown probability in avalanche photodiodes (APDs) is generalized to heterostructure APDs that may have multiple multiplication layers. The generalization addresses layer-boundary effects such as the initial energy of injected carriers as well as the layer-dependent profile of the dead space in the multiplication region. Reducing the width of the multiplication ...

متن کامل

Enhanced Gain-Bandwidth Product and Performance in Thin Heterostructure Avalanche Photodiodes

It is well known that the excess noise factor of an avalanche photodiode (APD), which is a measure of its gain fluctuation, can be reduced by decreasing the thickness of the avalanche multiplication region. This noise reduction is attributable to the increased importance of the dead-space effect in thin layers, which prevents a carrier from impact ionizing before it travels a sufficient distanc...

متن کامل

Impact-Ionization and Noise Characteristics of Thin III–V Avalanche Photodiodes

It is, by now, well known that McIntyre’s localized carrier-multiplication theory cannot explain the suppression of excess noise factor observed in avalanche photodiodes (APDs) that make use of thin multiplication regions. We demonstrate that a carrier multiplication model that incorporates the effects of dead space, as developed earlier by Hayat et al. provides excellent agreement with the imp...

متن کامل

Excess Noise in GaAs Avalanche Photodiodes with Thin Multiplication Regions

It is well known that the gain–bandwidth product of an avalanche photodiode can be increased by utilizing a thin multiplication region. Previously, measurements of the excess noise factor of InP–InGaAsP–InGaAs avalanche photodiodes with separate absorption and multiplication regions indicated that this approach could also be employed to reduce the multiplication noise. This paper presents a sys...

متن کامل

Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001